CHEM 6352 Organic Reactions & Synthesis Principles of Asymmetry

Criteria For Chirality

If a structure lacks all symmetry elements, it is ASSYMMETRIC.

(point group C₁), nonsuperimposable on its mirror image and chiral.

If a structure lacks a plane of symmetry but has other symmetry elements, it is DISSYMMETRIC,

nonsuperimposable on its mirror image, and chiral. Note that an asymmetric structure is dissymmetric, but a dissymmetric structure is not necessarily asymmetric.

If a structure possesses a plane of symmetry, it will be achiral (i.e., superimposable on its mirror image).

A plane of symmetry is a sufficient but not a necessary condition for achirality. Another sufficient condition is that the molecule possess a rotation-reflection axis, S_n , where n is even.

Restricted Heteronuclear Geometries

The following have restricted geometries and are hence stereogenic:

The Sequence Rule (Cahn-Ingold-Prelog Convention)

Multiple Chiral Centers

The D and L convention (carbohydrates): Note the D≠d. D or L refers to the rightor left-hand, respectively, position of the OH substituent on the highest numbered asymmetric carbon in a Fischer Projection.

$$\begin{array}{ccccc} & CH_3 & CH_3 \\ H & -OH & HO - H \\ HO & -H & H - OH \\ CH_3 & CH_3 \\ \end{array}$$

$$2S,3S\text{-butane-2,3-diol} \qquad 2R,3R\text{-butane-2,3-diol}$$

2*S*,3*R*-butane-2,3-diol 2*R*,3*S*-butane-2,3-diol

2S,3S and 2R,3R are **enantiomeric** (C_2 axis of rotation). 2S,3R is a **meso** compound, so its mirror image gives the same compound. The [2S,3S and 2S,3R] or [2R,3R and 2S,3R] are **epimers** (inversion of stereochemistry at one stereocenter).

The erythro and threo convention: When drawn in a Fischer projection, erythro isomers have the two non-hydrogen substituents on the same side. Hence 2S,3R is erythro while 2S,3S and 2R,3R are threo.

Chiral Axes

